We present a novel approach for GPU-based high quality volume rendering of large out-of-core volume data. By focusing on the locations and costs of ray traversal, we are able to significantly reduce the rendering time over traditional algorithms. We store a volume in an octree (of bricks); in addition, every brick is further split into regular macro-cells. Our solutions move the branch-intensive accelerating structure traversal out of the GPU raycasting loop and introduce an efficient empty-space culling method by rasterizing the proxy geometry of a view-dependent cut of the octree nodes. This rasterization pass can capture all of the bricks that the ray penetrates in a per-pixel list. Since the per-pixel list is captured in a front-to-back...