Many physical phenomena are modeled by PDEs. The discretization of these equations often leads to dynamical systems (continuous or discrete) depending on a control vector whose choice can stabilize the dynamical system. As these problems are, in practice, of a large size, it is interesting to study the problem through another one which is reduced and close to the original model. In this thesis, we develop and study new methods based on rational Krylov-based processes for model reduction techniques in large-scale Multi-Input Multi-Output (MIMO) linear time invariant dynamical systems. In chapter 2 the methods are based on the rational block Arnoldi process to reduce the size of a dynamical system through its transfer function. We provide an ...
AbstractThis work proposes a model reduction method, the adaptive-order rational Arnoldi (AORA) meth...
AbstractIn this paper, we propose a model reduction algorithm for approximation of large-scale linea...
AbstractIn this paper we introduce an approximation method for model reduction of large-scale dynami...
Many physical phenomena are modeled by PDEs. The discretization of these equations often leads to dy...
Many physical phenomena are modeled by PDEs. The discretization of these equations often leads to dy...
Beaucoup de phénomènes physiques sont modélisés par des équations aux dérivées partielles, la discré...
In recent years, a great interest has been shown towards Krylov subspace techniques applied to model...
Numerical solution of dynamical systems have been a successful means for studying complex physical p...
This dissertation focuses on efficiently forming reduced-order models for large, linear dynamic syst...
We present a new iterative model order reduction method for large-scale linear time-invariant dynami...
AbstractThis work proposes a model reduction method, the adaptive-order rational Arnoldi (AORA) meth...
[[abstract]]© 2006 Elsevier - This work proposes a model reduction method, the adaptive-order ration...
Model reduction for Linear dynamical system can be done by Krylov subspace method. In this paper, we...
212 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1997.This dissertation focuses on ...
212 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1997.This dissertation focuses on ...
AbstractThis work proposes a model reduction method, the adaptive-order rational Arnoldi (AORA) meth...
AbstractIn this paper, we propose a model reduction algorithm for approximation of large-scale linea...
AbstractIn this paper we introduce an approximation method for model reduction of large-scale dynami...
Many physical phenomena are modeled by PDEs. The discretization of these equations often leads to dy...
Many physical phenomena are modeled by PDEs. The discretization of these equations often leads to dy...
Beaucoup de phénomènes physiques sont modélisés par des équations aux dérivées partielles, la discré...
In recent years, a great interest has been shown towards Krylov subspace techniques applied to model...
Numerical solution of dynamical systems have been a successful means for studying complex physical p...
This dissertation focuses on efficiently forming reduced-order models for large, linear dynamic syst...
We present a new iterative model order reduction method for large-scale linear time-invariant dynami...
AbstractThis work proposes a model reduction method, the adaptive-order rational Arnoldi (AORA) meth...
[[abstract]]© 2006 Elsevier - This work proposes a model reduction method, the adaptive-order ration...
Model reduction for Linear dynamical system can be done by Krylov subspace method. In this paper, we...
212 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1997.This dissertation focuses on ...
212 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1997.This dissertation focuses on ...
AbstractThis work proposes a model reduction method, the adaptive-order rational Arnoldi (AORA) meth...
AbstractIn this paper, we propose a model reduction algorithm for approximation of large-scale linea...
AbstractIn this paper we introduce an approximation method for model reduction of large-scale dynami...