AbstractWe introduce a bichromatic Delaunay quadrangulation principle by assigning the vertices of a Delaunay triangulation one of two colors, then discarding edges between vertices of the same color. We present algorithms for generating quadrangulations using this principle and simple refinements. The global vertex coloring ensures that only local refinements are needed to get all quads. This is in contrast to triangle-pairing algorithms, which get stuck with isolated triangles that require global refinement. We present two new sphere-packing algorithms for generating the colored triangulation, and we may also take as input a Delaunay refinement mesh and color it arbitrarily. These mesh non-convex planar domains with provable quality: quad...