AbstractA polyhedral mesh fulfills the Delaunay condition if the vertices of each polyhedron are co-spherical and each polyhedron circum- sphere is point-free. If Delaunay tessellations are used together with the finite volume method, it is not necessary to partition each polyhedron into tetrahedra; co-spherical elements can be used as final elements. This paper presents a mixed-element mesh gen- erator based on the modified octree approach that has been adapted to generate polyhedral Delaunay meshes. The main difference with its predecessor is to include a new algorithm to compute Delaunay tessellations for each 1-irregular cuboids (cuboids with at most one Steiner point on their edges) that minimize the number of mesh elements. In particu...