We introduce a non-interleaving structural operational semantics for the applied π-calculus and prove that it satisfies the properties expected of a labelled asynchronous transition system (LATS). LATS have well-studied relations with other standard non-interleaving models, such as Mazurkiewicz traces or event structures, and are a natural extension of labelled transition systems where the independence of transitions is made explicit. We build on a considerable body of literature on located semantics for process algebras and adopt a static view on locations to identify the parallel processes that perform a transition. By lifting, in this way, work on CCS and π-calculus to the applied π-calculus, we lay down a principled foundation for reusi...