We present a formalisation in Agda of the theory of concurrent transitions, residuation and causal equivalence of traces for the π-calculus. Our formalisation employs de Bruijn indices and dependently typed syntax, and aligns the ‘proved transitions’ proposed by Boudol and Castellani in the context of CCS with the proof terms naturally present in Agda's representation of the labelled transition relation. Our main contributions are proofs of the ‘diamond lemma’ for the residuals of concurrent transitions and a formal definition of equivalence of traces up to permutation of transitions. In the π-calculus, transitions represent propagating binders whenever their actions involve bound names. To accommodate these cases, we require a more gene...