Game-tree search is the engine behind many computer game opponents. Traditional game-tree search algorithms decide which move to make based on simulating actions, evaluating future board states, and then applying the evaluations to estimate optimal play by all players. Yet the limiting factor of such algorithms is that the search space increases exponentially with the number of actions taken (i.e. the depth of the search). More recent research in game-tree search has revealed that even more important than evaluating future board states is effective pruning of the search space. Accordingly, this paper discusses Geometric Game-Tree Pruning (GGTP), a novel evolutionary method that learns to prune game trees based on geometric properties of the...