AbstractWe suggest the first strongly subexponential and purely combinatorial algorithm for solving the mean payoff games problem. It is based on iteratively improving the longest shortest distances to a sink in a possibly cyclic directed graph.We identify a new “controlled” version of the shortest paths problem. By selecting exactly one outgoing edge in each of the controlled vertices we want to make the shortest distances from all vertices to the unique sink as long as possible. The decision version of the problem (whether the shortest distance from a given vertex can be made bigger than a given bound?) belongs to the complexity class NP∩CONP. Mean payoff games are easily reducible to this problem. We suggest an algorithm for computing lo...