We study the computational complexity of solving mean payoff games. This class of games can be seen as an extension of parity games, and they have similar complexity status: in both cases solving them is in NP ? coNP and not known to be in P. In a breakthrough result Calude, Jain, Khoussainov, Li, and Stephan constructed in 2017 a quasipolynomial time algorithm for solving parity games, which was quickly followed by a few other algorithms with the same complexity. Our objective is to investigate how these techniques can be extended to mean payoff games. The starting point is the combinatorial notion of universal trees: all quasipolynomial time algorithms for parity games have been shown to exploit universal trees. Universal graphs extend un...