International audienceIn this paper, we present two greedy algorithms for the computation of the lowest eigen-value (and an associated eigenvector) of a high-dimensional eigenvalue problem, which have been introduced and analyzed recently in a joint work with Eric Cancès and Tony Lelièvre [1]. The performance of our algorithms is illustrated on toy numerical test cases, and compared with that of another greedy algorithm for eigenvalue problems introduced by Ammar and Chinesta [13]. Résumé. Dans ce document, nous présentons deux algorithmes gloutons for le calcul de la plus petite valeur propre (et d'un vecteur propre associé) d'un problème aux valeurs propres en grande dimension, qui ont été récemment introduits et analysés dans un travail ...
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. ...
We present a simple, iterative algorithm to find the lowest (few) eigenvalue(s) and eigenvector(s) o...
Abstract. This paper introduces fully computable two-sided bounds on the eigenvalues of the Laplace ...
International audienceIn this paper, we present two greedy algorithms for the computation of the low...
In this paper, we present two greedy algorithms for the computation of the lowest eigenval...
33 pages, 5 figuresInternational audienceIn this article, we present two new greedy algorithms for t...
This work concerns the global minimization of a prescribed eigenvalue or a weighted sum of prescribe...
© 2018 Societ y for Industrial and Applied Mathematics. We consider the minimization or maximization...
This talk introduces fully computable two-sided bounds on the eigenvalues of the Laplace operator on...
AbstractWe develop the theory of convergence of a generic GR algorithm for the matrix eigenvalue pro...
We study approximations of eigenvalue problems for integral operators associated with kernel functio...
We propose two new algorithms to improve greedy sampling of high-dimensional functions. While the te...
We present a new subspace iteration method for the efficient computation of several smallest eigenva...
In a very recent paper (Hu et al., The lower bounds for eigenvalues of elliptic operators by nonconf...
The problem of obtaining the smallest and the largest generalised eigenvalues using quasi Monte Carl...
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. ...
We present a simple, iterative algorithm to find the lowest (few) eigenvalue(s) and eigenvector(s) o...
Abstract. This paper introduces fully computable two-sided bounds on the eigenvalues of the Laplace ...
International audienceIn this paper, we present two greedy algorithms for the computation of the low...
In this paper, we present two greedy algorithms for the computation of the lowest eigenval...
33 pages, 5 figuresInternational audienceIn this article, we present two new greedy algorithms for t...
This work concerns the global minimization of a prescribed eigenvalue or a weighted sum of prescribe...
© 2018 Societ y for Industrial and Applied Mathematics. We consider the minimization or maximization...
This talk introduces fully computable two-sided bounds on the eigenvalues of the Laplace operator on...
AbstractWe develop the theory of convergence of a generic GR algorithm for the matrix eigenvalue pro...
We study approximations of eigenvalue problems for integral operators associated with kernel functio...
We propose two new algorithms to improve greedy sampling of high-dimensional functions. While the te...
We present a new subspace iteration method for the efficient computation of several smallest eigenva...
In a very recent paper (Hu et al., The lower bounds for eigenvalues of elliptic operators by nonconf...
The problem of obtaining the smallest and the largest generalised eigenvalues using quasi Monte Carl...
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. ...
We present a simple, iterative algorithm to find the lowest (few) eigenvalue(s) and eigenvector(s) o...
Abstract. This paper introduces fully computable two-sided bounds on the eigenvalues of the Laplace ...