Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We describe algorithms for computing eigenpairs (eigenvalue-eigenvector pairs) of a complex n×n matrix A. These algorithms are numerically stable, strongly accurate, and theoretically efficient (i.e., polynomial-time). We do not believe they outperform in practice the algorithms currently used for this computational problem. The merit of our paper is to give a positive answer to a long-standing open problem in numerical linear alg...
A new parallel Jacobi-like algorithm is developed for computing the eigenvalues of a general complex...
We consider upper Hessenberg unitary-plus-rank-one matrices, that is, matrices of the form $A = \t...
AbstractA numerical method for solving joint eigenpairs of a family of commuting matrices is present...
In the last decade matrix polynomials have been investigated with the primary focus on adequate line...
Linear eigenproblems continue to be an important and highly relevant area of research in numerical l...
International audienceIn this paper, we present an efficient algorithm for the certication of numeri...
A homotopy method to compute the eigenpairs, i.e., the eigenvectors and eigenvalues, of a given real...
Independent eigenvector computation for a given set of eigenvalues of typical engineering eigenvalu...
In this thesis we develop new theoretical and numerical results for matrix polynomials and polynomia...
Abstract.In this paper, a fundamentally new method, based on the definition, is introduced for numer...
The class of eigenvalue problems for upper Hessenberg matrices of banded-plus-spike form includes co...
AbstractThis paper sketches the main research developments in the area of computational methods for ...
Eigenvalue computations are ubiquitous in science and engineering. John Francis's implicitly shifted...
The matrix eigenvalue problem is often encountered in scientific computing applications. Although it...
AbstractWe propose new techniques and algorithms for the solution of a polynomial system of equation...
A new parallel Jacobi-like algorithm is developed for computing the eigenvalues of a general complex...
We consider upper Hessenberg unitary-plus-rank-one matrices, that is, matrices of the form $A = \t...
AbstractA numerical method for solving joint eigenpairs of a family of commuting matrices is present...
In the last decade matrix polynomials have been investigated with the primary focus on adequate line...
Linear eigenproblems continue to be an important and highly relevant area of research in numerical l...
International audienceIn this paper, we present an efficient algorithm for the certication of numeri...
A homotopy method to compute the eigenpairs, i.e., the eigenvectors and eigenvalues, of a given real...
Independent eigenvector computation for a given set of eigenvalues of typical engineering eigenvalu...
In this thesis we develop new theoretical and numerical results for matrix polynomials and polynomia...
Abstract.In this paper, a fundamentally new method, based on the definition, is introduced for numer...
The class of eigenvalue problems for upper Hessenberg matrices of banded-plus-spike form includes co...
AbstractThis paper sketches the main research developments in the area of computational methods for ...
Eigenvalue computations are ubiquitous in science and engineering. John Francis's implicitly shifted...
The matrix eigenvalue problem is often encountered in scientific computing applications. Although it...
AbstractWe propose new techniques and algorithms for the solution of a polynomial system of equation...
A new parallel Jacobi-like algorithm is developed for computing the eigenvalues of a general complex...
We consider upper Hessenberg unitary-plus-rank-one matrices, that is, matrices of the form $A = \t...
AbstractA numerical method for solving joint eigenpairs of a family of commuting matrices is present...