We consider an infinite collection of agents who make decisions, sequentially, about an unknown underlying binary state of the world. Each agent, prior to making a decision, receives an independent private signal whose distribution depends on the state of the world. Moreover, each agent also observes the decisions of its last K immediate predecessors. We study conditions under which the agent decisions converge to the correct value of the underlying state. We focus on the case where the private signals have bounded information content and investigate whether learning is possible, that is, whether there exist decision rules for the different agents that result in the convergence of their sequence of individual decisions to the correct state ...