We generalize a yes-no model of influence in a social network with a single step of mutual influence to a framework with iterated influence. Each agent makes an acceptance- rejection decision and has an inclination to say either ‘yes' or ‘no'. Due to influence by others, an agent's decision may be different from his original inclination. Such a transformation from the inclinations to the decisions is represented by an influence function. We analyze the decision process in which the mutual influence does not stop after one step but iterates. Any classical influence function can be coded by a stochastic matrix, and a generalization leads to stochastic influence functions. We apply Markov chains theory to the analysis of stochastic binary infl...