Infinite duration games with regular conditions are one of the crucial tools in the areas of verification and synthesis. In this paper we consider a branching variant of such games - the game contains branching vertices that split the play into two independent sub-games. Thus, a play has the form of~an~infinite tree. The winner of the play is determined by a winning condition specified as a set of infinite trees. Games of this kind were used by Mio to provide a game semantics for the probabilistic mu-calculus. He used winning conditions defined in terms of parity games on trees. In this work we consider a more general class of winning conditions, namely those definable by finite automata on infinite trees. Our games can be seen as a branch...