This dissertation contains two chapters on the use of torus actions in algebraic geometry. In chapter 2 we study ”immaculate line bundles” on projective toric varieties. The cohomology groups of those line bundles vanish in all degrees, including the 0-th degree. Immaculate line bundles can be seen as building blocks of full exceptional sequences of line bundles of the variety. All the immaculate line bundles of a toric variety X = TV(Σ) can be identified in two steps. First identify those subsets of the rays Σ(1) whose geometric realization is not k-acyclic, they will be called tempting. Those subsets of the rays give ”maculate sets/regions” in the class group of the variety. A line bundle is immaculate, if it is not in any of those...