Hausdorff and box dimension are two familiar notions of fractal dimension. Box dimension can be larger than Hausdorff dimension, because in the definition of box dimension, all sets in the cover have the same diameter, but for Hausdorff dimension there is no such restriction. This thesis focuses on a family of dimensions parameterised by θ ∈ (0,1), called the intermediate dimensions, which are defined by requiring that diam(U) ⩽ (diam(V))ᶿ for all sets U, V in the cover. We begin by generalising the intermediate dimensions to allow for greater refinement in how the relative sizes of the covering sets are restricted. These new dimensions can recover the interpolation between Hausdorff and box dimension for compact sets whose intermediat...