We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+ x b+ x c+ 1. Let m= 2 b+ c and use f to define the finite field extension of degree m. We give the exact number of operations required for computing the reduction modulo f. We also provide a multiplier based on Karatsuba algorithm in F 2[x] combined with our reduction process. We give the total cost of the multiplier and found that the bit-parallel multiplier defined by this new class of polynomials has improved XOR and AND complexity. Our multiplier has comparable time delay when compared to other multipliers based on Karatsuba algorithm. </p
When implementing a cryptographic algorithm, efficient operations have high relevance both in hardwa...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over ${\mathbb F}_{2^m}$ of the form $f(x) = x^...
We introduce a new class of irreducible pentanomials over F2F2 of the form f(x)=x2b+c+xb+c+xb+xc+1f(...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
\u3cp\u3eWe introduce a new class of irreducible pentanomials over F \u3csub\u3e2\u3c/...
Efficient hardware implementations of arithmetic operations in the Galois field GF(2^m) are highly d...
In this paper, a fast implementation of bit-parallel polynomial basis (PB) multipliers over the bina...
Hardware implementations of arithmetic operations over binary finite fields GF(2^m) are widely used ...
Hardware implementations of arithmetic operations over binary finite fields GF(2^m) are widely used ...
A new method for building bit-parallel polynomial basis finite field multipliers is proposed in this...
When implementing a cryptographic algorithm, efficient operations have high relevance both in hardwa...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over ${\mathbb F}_{2^m}$ of the form $f(x) = x^...
We introduce a new class of irreducible pentanomials over F2F2 of the form f(x)=x2b+c+xb+c+xb+xc+1f(...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
\u3cp\u3eWe introduce a new class of irreducible pentanomials over F \u3csub\u3e2\u3c/...
Efficient hardware implementations of arithmetic operations in the Galois field GF(2^m) are highly d...
In this paper, a fast implementation of bit-parallel polynomial basis (PB) multipliers over the bina...
Hardware implementations of arithmetic operations over binary finite fields GF(2^m) are widely used ...
Hardware implementations of arithmetic operations over binary finite fields GF(2^m) are widely used ...
A new method for building bit-parallel polynomial basis finite field multipliers is proposed in this...
When implementing a cryptographic algorithm, efficient operations have high relevance both in hardwa...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...