We introduce a new class of irreducible pentanomials over F2F2 of the form f(x)=x2b+c+xb+c+xb+xc+1f(x)=x2b+c+xb+c+xb+xc+1. Let m=2b+cm=2b+c and use f to define the finite field extension of degree m. We give the exact number of operations required for computing the reduction modulo f. We also provide a multiplier based on Karatsuba algorithm in F2[x]F2[x]combined with our reduction process. We give the total cost of the multiplier and found that the bit-parallel multiplier defined by this new class of polynomials has improved XOR and AND complexity. Our multiplier has comparable time delay when compared to other multipliers based on Karatsuba algorithm
In this paper, a fast implementation of bit-parallel polynomial basis (PB) multipliers over the bina...
We show that the step “modulo the degree-n field generating irreducible polynomial ” in the clas-sic...
AbstractIt is well known that the Stickelberger–Swan theorem is very important for determining the r...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over ${\mathbb F}_{2^m}$ of the form $f(x) = x^...
\u3cp\u3eWe introduce a new class of irreducible pentanomials over F \u3csub\u3e2\u3c/...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
Efficient hardware implementations of arithmetic operations in the Galois field GF(2^m) are highly d...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...
In this paper, a fast implementation of bit-parallel polynomial basis (PB) multipliers over the bina...
We show that the step “modulo the degree-n field generating irreducible polynomial ” in the clas-sic...
AbstractIt is well known that the Stickelberger–Swan theorem is very important for determining the r...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over ${\mathbb F}_{2^m}$ of the form $f(x) = x^...
\u3cp\u3eWe introduce a new class of irreducible pentanomials over F \u3csub\u3e2\u3c/...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
We introduce a new class of irreducible pentanomials over F 2 of the form f(x) = x 2 b + c+ x b + c+...
Efficient hardware implementations of arithmetic operations in the Galois field GF(2^m) are highly d...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...
L'articolo descrive una nuova rappresentazione degli elementi nei campi finiti di tipo GF(2^m) che c...
In this paper, a fast implementation of bit-parallel polynomial basis (PB) multipliers over the bina...
We show that the step “modulo the degree-n field generating irreducible polynomial ” in the clas-sic...
AbstractIt is well known that the Stickelberger–Swan theorem is very important for determining the r...