Computer Go programs have surpassed top-level human players by using deep learning and reinforcement learning techniques. Other than the strength, entertaining Go AI and AI coaches are also interesting directions but have not been well investigated. Some researchers have worked on entertaining beginners or intermediate players. One topic is position control, aiming to make strong programs play close games against weak players. Under such a scenario, the naturalness of the moves is likely to influence weaker players’ enjoyment. Another topic is producing various strategies (or preferences), which human players usually have. Some methods for the two topics have been proposed and evaluated for a traditional Monte-Carlo tree search (MCTS) progr...