The development of numerical methods for solving nonlinear evolution problems is currently a growing research field. Therefore, the main goal of this thesis is to address several needs regarding the development of time perturbation methods and numerical summation of divergent series used as time integration schemes. We are interested in the Asymptotic Numerical Method, the Borel Padé Laplace summation, the Inverse factorial series, and the Meijer-G approximant.The most interesting property of these approaches is that the obtained solutions are continuous in time. These methods are applied to the ordinary and partial differential equations in mechanics. These include the heat equation, Burgers, the interface tracking equation and the Navie...
summary:Numerical simulations of time-dependent behaviour of advances structures need the analysis o...
Many nonlinear differential equations have solutions that cease to exist in finite time because thei...
Efficient time stepping algorithms are crucial for accurate long time simulations of nonlinear waves...
The development of numerical methods for solving nonlinear evolution problems is currently a growing...
International audienceBorel's technique of divergent series resummation is transformed into a numeri...
International audienceWe compare the performance of two algorithms of computing the Borel sum of a t...
Les systèmes dynamiques qui évoluent sur un grand intervalle de temps (dynamique moléculaire, prédic...
The perturbation theory has proved to be an efficient tool for the numerical resolution of non-linea...
International audienceIn this research work, numerical time perturbation methods are applied on nonl...
La résolution des équations différentielles (EDP/EDO/EDA) est au cœur de la simulation de phénomènes...
Le mémoire de cette thèse porte sur le algorithmes par décomposition de domaine sans recouvrement po...
Les équations aux dérivées partielles issues de la nature n’ont pas de solutions explicites et ne pe...
Complexification of multi-physics modeling leads to have to simulate systems of ordinary differentia...
Differential equations are an important building block for modeling processes in physics, biology, a...
Rapporteurs: Albert Cohen, David Gottlieb, Frédéric Poupaud; Président du jury : Denis Serre; Examin...
summary:Numerical simulations of time-dependent behaviour of advances structures need the analysis o...
Many nonlinear differential equations have solutions that cease to exist in finite time because thei...
Efficient time stepping algorithms are crucial for accurate long time simulations of nonlinear waves...
The development of numerical methods for solving nonlinear evolution problems is currently a growing...
International audienceBorel's technique of divergent series resummation is transformed into a numeri...
International audienceWe compare the performance of two algorithms of computing the Borel sum of a t...
Les systèmes dynamiques qui évoluent sur un grand intervalle de temps (dynamique moléculaire, prédic...
The perturbation theory has proved to be an efficient tool for the numerical resolution of non-linea...
International audienceIn this research work, numerical time perturbation methods are applied on nonl...
La résolution des équations différentielles (EDP/EDO/EDA) est au cœur de la simulation de phénomènes...
Le mémoire de cette thèse porte sur le algorithmes par décomposition de domaine sans recouvrement po...
Les équations aux dérivées partielles issues de la nature n’ont pas de solutions explicites et ne pe...
Complexification of multi-physics modeling leads to have to simulate systems of ordinary differentia...
Differential equations are an important building block for modeling processes in physics, biology, a...
Rapporteurs: Albert Cohen, David Gottlieb, Frédéric Poupaud; Président du jury : Denis Serre; Examin...
summary:Numerical simulations of time-dependent behaviour of advances structures need the analysis o...
Many nonlinear differential equations have solutions that cease to exist in finite time because thei...
Efficient time stepping algorithms are crucial for accurate long time simulations of nonlinear waves...