Efficient time stepping algorithms are crucial for accurate long time simulations of nonlinear waves. In particular, adaptive time stepping combined with an integrating factor are known to be very effective. We propose a modification of the existing technique. The trick consists in subtracting a certain-order polynomial to a PDE. Then, like for the integrating factor, a change of variables is performed to remove the linear part. But, here, we hope to remove something more to make the PDE less stiff to numerical resolution. The polynomial is chosen as a Taylor expansion around the initial time of the solution. In order to calculate the different derivatives, we use a dense output which gives a possibility to approximate the derivatives of th...
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to...
The development of numerical methods for solving nonlinear evolution problems is currently a growing...
La thèse porte sur l’analyse d’erreur a posteriori pour la résolution numérique de l’équation linéai...
Pour réaliser des simulations précises aux temps longs pour des vagues non linéaires, il faut faire ...
Pour réaliser des simulations précises aux temps longs pour des vagues non linéaires, il faut faire ...
It is possible to construct fully implicit Runge-Kutta methods like Gauß-Legendre, Radau-IA, Radau-I...
We are interested in the simulation of two-phase flows representing oil transportation in pipelines....
The accurate space-time discretization of the partial differential equations (PDEs) governing the dy...
Existing time-stepping methods for PDEs such as Navier-Stokes equations are not as efficient or scal...
Abstract. In this note, we emphasize the importance of a suitable temporal integrator for fully nonl...
ference schemes, numerical wave propagation Abstract. Numerical schemes for wave propagation over lo...
Complexification of multi-physics modeling leads to have to simulate systems of ordinary differentia...
Locally refined meshes severely impede the efficiency of explicit Runge-Kutta (RK) methods for the s...
Local adaptivity and mesh refinement are key to the efficient simulation of wave phenomena in hetero...
The numerical solution of time-dependent ordinary and partial differential equations presents a numb...
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to...
The development of numerical methods for solving nonlinear evolution problems is currently a growing...
La thèse porte sur l’analyse d’erreur a posteriori pour la résolution numérique de l’équation linéai...
Pour réaliser des simulations précises aux temps longs pour des vagues non linéaires, il faut faire ...
Pour réaliser des simulations précises aux temps longs pour des vagues non linéaires, il faut faire ...
It is possible to construct fully implicit Runge-Kutta methods like Gauß-Legendre, Radau-IA, Radau-I...
We are interested in the simulation of two-phase flows representing oil transportation in pipelines....
The accurate space-time discretization of the partial differential equations (PDEs) governing the dy...
Existing time-stepping methods for PDEs such as Navier-Stokes equations are not as efficient or scal...
Abstract. In this note, we emphasize the importance of a suitable temporal integrator for fully nonl...
ference schemes, numerical wave propagation Abstract. Numerical schemes for wave propagation over lo...
Complexification of multi-physics modeling leads to have to simulate systems of ordinary differentia...
Locally refined meshes severely impede the efficiency of explicit Runge-Kutta (RK) methods for the s...
Local adaptivity and mesh refinement are key to the efficient simulation of wave phenomena in hetero...
The numerical solution of time-dependent ordinary and partial differential equations presents a numb...
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to...
The development of numerical methods for solving nonlinear evolution problems is currently a growing...
La thèse porte sur l’analyse d’erreur a posteriori pour la résolution numérique de l’équation linéai...