We settle two long-standing open problems about Conway’s Life, a two-dimensional cellular automaton. We solve the Generalized grandfather problem: for all n ≥ 0, there exists a configuration that has an nth predecessor but not an (n+1)st one. We also solve (one interpretation of) the Unique father problem: there exists a finite stable configuration that contains a finite subpattern that has no predecessor patterns except itself. In particular this gives the first example of an unsynthesizable still life. The new key concept is that of a spatiotemporally periodic configuration (agar) that has a unique chain of preimages; we show that this property is semidecidable, and find examples of such agars using a SAT solver.Our results about the topo...