International audienceThis review article addresses the dynamics and control of low-frequency unsteadiness, as observed in some aerodynamic applications. It presents a coherent and rigorous linearized approach, which enables both to describe the dynamics of commonly encountered open-flows and to design open-loop and closed-loop control strategies, in view of suppressing or delaying instabilities. The approach is global in the sense that both cross-stream and streamwise directions are discretized in the evolution operator. New light will therefore be shed on the streamwise properties of open-flows. In the case of oscillator flows, the unsteadiness is due to the existence of unstable global modes, i.e., unstable eigenfunctions of the lineariz...