International audienceConsider a branching random walk in which the offspring distribution and the moving law both depend on an independent and identically distributed random environment indexed by the time. For the normalised counting measure of the number of particles of generation $n$ in a given region, we give the second and third orders asymptotic expansions of the central limit theorem under rather weak assumptions on the moments of the underlying branching and moving laws. The obtained results and the developed approaches shed light on higher order expansions. In the proofs, the Edgeworth expansion of central limit theorems for sums of independent random variables, truncating arguments and martingale approximation play key roles. In ...