International audienceEncoded Neural Networks (ENNs) associate lowcomplexity algorithm with a storage capacity much larger than Hopfield Neural Networks (HNNs) for the same number of nodes. Moreover, they have a lower density than HNNs in terms of connections, allowing a low-complexity circuit integration. The implementation of such a network requires low-complexity elements to take complete advantage of the assets of the model. This paper proposes an analog implementation of the ENNs. It is shown that this type of implementation is suitable for building network of thousands of nodes. To validate the proposed implementation, a prototype ENN of 30 computation nodes is designed, fabricated and tested on-chip for the ST 65-nm 1- V supply compl...