A new version wich includes the higher rank bundles, and a kind of uniqueness. To appear in the Journal of Symplectic Geometry.International audienceIn a compact, symplectic real manifold, i.e supporting an antisymplectic involution, we use Donaldson's construction to build a codimension 2 symplectic submanifold invariant under the action of the involution. If the real part of the manifold is not empty, and if the symplectic form $\om$ is entire, then for all $k$ big enough, we can find a hypersurface Poincaré dual of $k[\omega]$ such that its real part has at least $k^{\dim X/4}$ connected components, up to a constant independant of $k$. Finally we extend to our real case Donaldson's construction of Lefschetz pencils
In a first part, we develop the theory of symplectic homogenezation and its application to the Aubry...
AbstractWe are interested in Lp-estimates of harmonic sections of some vector bundles over Riemannia...
RésuméCet article comporte deux parties indépendantes, mais complémentaires. La première prouve l'an...
A new version wich includes the higher rank bundles, and a kind of uniqueness. To appear in the Jour...
This thesis investigates the complex symplectic geometry of the deformation space of complex project...
AbstractIn this paper we prove that every entire curve in a smooth hypersurface of degree d⩾97 in PC...
Membres du Jury: Jean-Pierre Demailly, Christoph Sorger, Thierry Levasseur, Johannes Huisman, Jorg W...
19 pagesInternational audienceA complex filling of a CR manifold is said to be equivariant with resp...
We consider irreducible tracefree non-singular or meromorphic rank 2 connections over compact Rieman...
International audienceSoit M une sous-variété définissable dans une structure o-minimale A et soit o...
in frenchIt is a step in the proof of the stabilization of the twisted trace formula. We generalize ...
Abstract : This thesis consists of two independent parts about two different problems in Algebraic G...
AbstractTwo problems concerning asymptotically hyperbolic manifolds with an inner boundary are studi...
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2011-2012Ce mémoire porte ...
Let $E$ be an elliptic curve defined over a number field $K$ and let $v$ be a finite place of $K$. W...
In a first part, we develop the theory of symplectic homogenezation and its application to the Aubry...
AbstractWe are interested in Lp-estimates of harmonic sections of some vector bundles over Riemannia...
RésuméCet article comporte deux parties indépendantes, mais complémentaires. La première prouve l'an...
A new version wich includes the higher rank bundles, and a kind of uniqueness. To appear in the Jour...
This thesis investigates the complex symplectic geometry of the deformation space of complex project...
AbstractIn this paper we prove that every entire curve in a smooth hypersurface of degree d⩾97 in PC...
Membres du Jury: Jean-Pierre Demailly, Christoph Sorger, Thierry Levasseur, Johannes Huisman, Jorg W...
19 pagesInternational audienceA complex filling of a CR manifold is said to be equivariant with resp...
We consider irreducible tracefree non-singular or meromorphic rank 2 connections over compact Rieman...
International audienceSoit M une sous-variété définissable dans une structure o-minimale A et soit o...
in frenchIt is a step in the proof of the stabilization of the twisted trace formula. We generalize ...
Abstract : This thesis consists of two independent parts about two different problems in Algebraic G...
AbstractTwo problems concerning asymptotically hyperbolic manifolds with an inner boundary are studi...
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2011-2012Ce mémoire porte ...
Let $E$ be an elliptic curve defined over a number field $K$ and let $v$ be a finite place of $K$. W...
In a first part, we develop the theory of symplectic homogenezation and its application to the Aubry...
AbstractWe are interested in Lp-estimates of harmonic sections of some vector bundles over Riemannia...
RésuméCet article comporte deux parties indépendantes, mais complémentaires. La première prouve l'an...