Let $E$ be an elliptic curve defined over a number field $K$ and let $v$ be a finite place of $K$. Write $K^{tv}$ the maximal extension of $K$ in which $v$ is totally split and $L$ the field generated over $K^{tv}$ by all torsion points of $E$. Under some conditions, we will show that the absolute logarithmic Weil height (resp. N\'eron-Tate height) of any element of $L^*$ (resp. $E(L)$) is either $0$ or bounded from below by a positive constant depending only on $E, K$ and $v$. This lower bound will be explicit in the toric case when $K=\mathbb{Q}$.Comment: comments are welcom
Let k be a field and let f : X → Y be a surjective morphism of k-varieties with dim Y = d ≥ 1. Impro...
International audienceLet p be a prime number, and let K/k be a finite Galois extension of number fi...
AbstractIn this paper, we prove an extension theorem through a Cauchy–Riemann submanifold of Cn, for...
\'Etant donn\'e un anneau de valuation $V$, de corps r\'esiduel $F$ et de groupe des valeurs $\Gamma...
AbstractWe present in this article several possibilities to approach the height of an algebraic curv...
AbstractThis paper is devoted to the statement known as the Bogomolov conjecture on small points. We...
We offer a different proof of E. Ambrosi's reduction of the Tate conjecture in codimension $1$ from ...
Recently, R\'emond stated a very general conjecture on lower bounds of a normalized height on either...
RésuméNous étudions les propriétés métriques des points rationnels de petite hauteur dans les variét...
13 pages, in FrenchGiven a valuation ring $V$, with residue field $F$ and value group $\Gamma$, we g...
AbstractWe give a combinatorial, self-contained proof of the existence of a smooth equivariant compa...
Classically, to find particular cases of a conjecture of R\'emond, we using a metric estimate, then ...
RÉSUMÉ. Nous exposons une démonstration du théorème de A. Macintyre sur la structure des ensembles a...
RésuméSoit K/k une extension de corps algébriquement clos de degré de transcendance infini. Alors to...
AbstractWe use classical results on the zeroes of Dirichlet L-functions to prove the nonvanishing of...
Let k be a field and let f : X → Y be a surjective morphism of k-varieties with dim Y = d ≥ 1. Impro...
International audienceLet p be a prime number, and let K/k be a finite Galois extension of number fi...
AbstractIn this paper, we prove an extension theorem through a Cauchy–Riemann submanifold of Cn, for...
\'Etant donn\'e un anneau de valuation $V$, de corps r\'esiduel $F$ et de groupe des valeurs $\Gamma...
AbstractWe present in this article several possibilities to approach the height of an algebraic curv...
AbstractThis paper is devoted to the statement known as the Bogomolov conjecture on small points. We...
We offer a different proof of E. Ambrosi's reduction of the Tate conjecture in codimension $1$ from ...
Recently, R\'emond stated a very general conjecture on lower bounds of a normalized height on either...
RésuméNous étudions les propriétés métriques des points rationnels de petite hauteur dans les variét...
13 pages, in FrenchGiven a valuation ring $V$, with residue field $F$ and value group $\Gamma$, we g...
AbstractWe give a combinatorial, self-contained proof of the existence of a smooth equivariant compa...
Classically, to find particular cases of a conjecture of R\'emond, we using a metric estimate, then ...
RÉSUMÉ. Nous exposons une démonstration du théorème de A. Macintyre sur la structure des ensembles a...
RésuméSoit K/k une extension de corps algébriquement clos de degré de transcendance infini. Alors to...
AbstractWe use classical results on the zeroes of Dirichlet L-functions to prove the nonvanishing of...
Let k be a field and let f : X → Y be a surjective morphism of k-varieties with dim Y = d ≥ 1. Impro...
International audienceLet p be a prime number, and let K/k be a finite Galois extension of number fi...
AbstractIn this paper, we prove an extension theorem through a Cauchy–Riemann submanifold of Cn, for...