This thesis focus on memory-aware algorithms tailored for hierarchical memory architectures, found for instance within multicore processors. We first study the matrix product on multicore architectures. We model such a processor, and derive lower bounds on the communication volume. We introduce three ad hoc algorithms, and experimentally assess their performance.We then target a more complex operation: the QR factorization of tall matrices. We revisit existing algorithms to better exploit the parallelism of multicore processors. We thus study the critical paths of many algorithms, prove some of them to be asymptotically optimal, and assess their performance.In the next study, we focus on scheduling streaming applications onto a heterogeneou...