Real-world datasets are often characterised by outliers; data items that do not follow the same structure as the rest of the data. These outliers might negatively influence modelling of the data. In data analysis it is, therefore, important to consider methods that are robust to outliers. In this paper we develop a robust regression method that finds the largest subset of data items that can be approximated using a sparse linear model to a given precision. We show that this can yield the best possible robustness to outliers. However, this problem is NP-hard and to solve it we present an efficient approximation algorithm, termed SLISE. Our method extends existing state-of-the-art robust regression methods, especially in terms of speed on hig...