We propose a procedure for computing a fast approximation to regression estimates based on the minimization of a robust scale. The procedure can be applied with a large number of independent variables where the usual algorithms require an unfeasible or extremely costly computer time. Also, it can be incorporated in any high-breakdown estimation method and may improve it with just little additional computer time. The procedure minimizes the robust scale over a set of tentative parameter vectors estimated by least squares after eliminating a set of possible outliers, which are obtained as follows. We represent each observation by the vector of changes of the least squares forecasts of the observation when each of the data points is deleted. T...