International audienceKrivine presented in [Kri10] a methodology to combine Cohen's forcing with the theory of classical realizability and showed that the forcing condition can be seen as a reference that is not subject to backtracks. The underlying classical program transformation was then analyzed by Miquel [Miq11] in a fully typed setting in classical higher-order arithmetic (PAω⁺). As a case study of this methodology, we present a method to extract a Herbrand tree from a classical realizer of inconsistency, following the ideas underlying the compactness theorem and the proof of Herbrand's theorem. Unlike the traditional proof based on König's lemma (using a fixed enumeration of atomic formulas), our method is based on the introduction o...