The Herbrand theorem plays a fundamental role in automated theorem proving methods based on \emph{global variable} or \emph{rigid variable} approaches. The kernel step in procedures based on such methods can be described as the \emph{corroboration} problem (also called the \emph{Herbrand skeleton} problem), where, given a positive integer $m$, called \emph{multiplicity}, and a quantifier free formula, one seeks for a valid or provable (in classical first-order logic) disjunction of $m$ instantiations of that formula. In logic with equality this problem was recently shown to be undecidable. The first main contribution of this paper is a logical theorem, that we call the \emph{Partisan Corroboration Theorem}, that enables us to show that, for...