We prove a series of results which open the way to computations of functor homology over arbitary additive categories. In particular, we generalize the strong comparison theorem of Franjou Friedlander Scorichenko and Suslin to an arbitrary Fp-linear additive category. This result allows us to compare the cohomology of the classical algebraic groups and the cohomology of their discrete groups of k-points when k is an infinite perfect field of positive characteristic, in the spirit of the celebrated theorem of Cline Parshall Scott and van der Kallen over finite fields.Nous établissons une série de résultats rendant accessibles de nombreux calculs d'homologie des foncteurs sur une catégorie additive arbitraire. En particulier, nous généralison...
In this thesis we construct the universal coCartesian fibration , which (strictly) classifies coCart...
In this thesis we construct the universal coCartesian fibration , which (strictly) classifies coCart...
Let Mk be the category of algebras over a unique factorization domain k, and let ind-Affk denote th...
We uncover several general phenomenas governing functor homology over additive categories. In partic...
International audienceWe give sufficient conditions which ensure that a functor of finite length fro...
The work presented in this thesis deals with the study of representations ans cohomology of strict p...
The work presented in this thesis deals with the study of representations ans cohomology of strict p...
This book features a series of lectures that explores three different fields in which functor homolo...
The aim of this work is to study the global structure of the category F of functors between F_2-vect...
On montre que les groupes d'extensions entre foncteurs polynomiaux sur les groupes libres sont les m...
AbstractIn this paper we propose an approach to homotopical algebra where the basic ingredient is a ...
130 pagesSoit F la catégorie des foncteurs entre espaces vectoriels sur un corps fini. Les catégorie...
In this paper we propose an approach to homotopical algebra where the basic ingredient is a category...
Ideals are used to define homological functors in additive categories. In abelian categories the ide...
In this thesis we construct the universal coCartesian fibration , which (strictly) classifies coCart...
In this thesis we construct the universal coCartesian fibration , which (strictly) classifies coCart...
In this thesis we construct the universal coCartesian fibration , which (strictly) classifies coCart...
Let Mk be the category of algebras over a unique factorization domain k, and let ind-Affk denote th...
We uncover several general phenomenas governing functor homology over additive categories. In partic...
International audienceWe give sufficient conditions which ensure that a functor of finite length fro...
The work presented in this thesis deals with the study of representations ans cohomology of strict p...
The work presented in this thesis deals with the study of representations ans cohomology of strict p...
This book features a series of lectures that explores three different fields in which functor homolo...
The aim of this work is to study the global structure of the category F of functors between F_2-vect...
On montre que les groupes d'extensions entre foncteurs polynomiaux sur les groupes libres sont les m...
AbstractIn this paper we propose an approach to homotopical algebra where the basic ingredient is a ...
130 pagesSoit F la catégorie des foncteurs entre espaces vectoriels sur un corps fini. Les catégorie...
In this paper we propose an approach to homotopical algebra where the basic ingredient is a category...
Ideals are used to define homological functors in additive categories. In abelian categories the ide...
In this thesis we construct the universal coCartesian fibration , which (strictly) classifies coCart...
In this thesis we construct the universal coCartesian fibration , which (strictly) classifies coCart...
In this thesis we construct the universal coCartesian fibration , which (strictly) classifies coCart...
Let Mk be the category of algebras over a unique factorization domain k, and let ind-Affk denote th...