Starting from the observation that the standard presentation of a virtual braid group mixes the standard presentation of the corresponding braid group with the standard presentation of the corresponding symmetric group and some mixed relations that mimic the action of the symmetric group on its root system, we define a virtual Artin group $VA[\Gamma]$ of a Coxeter graph $\Gamma$ mixing the standard presentation of the Artin group $A[\Gamma]$ with the standard presentation of the Coxeter group $W[\Gamma]$ and some mixed relations that mimic the action of $W[\Gamma]$ on its root system. By definition we have two epimorphisms $\pi_K:VA[\Gamma]\to W[\Gamma]$ and $\pi_P:VA[\Gamma]\to W[\Gamma]$ whose kernels are denoted by $KVA[\Gamma]$ and $PVA...