Coxeter groups are a general family of groups that contain the isometry groups of the Platonic solids and the symmetry groups of regular Euclidean tilings. These groups are ubiquitous and well-understood. They are also closely linked to the lesser-known braided versions known as Artin groups. In this dissertation, I investigate the word problem for Artin groups corresponding to Coxeter groups that act naturally on Euclidean space. The corresponding Artin group is the fundamental group of the quotient of the complexified Euclidean space after removing the fixed hyperplanes of the reflections in the Coxeter group. To understand a Euclidean Artin group, I focus on the structure of the infinite sheeted cover corresponding to the kernel of the h...