This thesis describes the design of control algorithms, modelling, testing, and analysis of use cases of the INSTAR system, a dedicated high-power, low cost energy storage system designed to increase energy efficiency and performance in hybrid vehicles, with special application in urban commercial vehicles. The system is intended to be combined with an electrochemical battery and small energy generator to provide 3 distinct magnitudes of power delivery and absorption to the traction motors. The advantages of such a system would be decreased generator size, decreased component size, and potentially increased battery service life. Flywheel control algorithms were developed and tested to absorb excessive electrical energy during regenerative b...