Os grupos de homologia (e cohomologia) associados a um grupo são invariantes algébricos importantes do grupo. Infelizmente, em muitos casos importantes, esses grupos são muito complicados para serem calculados explicitamente. Devido a isso, os resultados que permitem comparar os grupos de (co)homologia para grupos diferentes tornam-se muito importantes. O interesse neste problema vem da K-teoria algébrica e do estudo dos K-grupos associados num anel, devido à existência de vários tipos de extensões centrais universais na K-teoria algébrica. Nesta tese, estudamos tais homomorfismos para os terceiros grupos de homologia de uma extensão central perfeita. Uma extensão central A → G → Q é chamada de perfeita se G é um grupo perfeito, o...