Neste trabalho estudamos teorias de calibre em variedades de dimensão alta, com ênfase em variedades Calabi-Yau, G2 e Spin(7). Começamos desenvolvendo a teoria de conexões em fibrados e seus grupos de holonomia, culminando com o teorema de Berger que classifica as possíveis holonomias de variedades Riemannianas e o teorema de Wang relacionando a holonomia à existência de espinores paralelos. A seguir, descrevemos em mais detalhes as estruturas geométricas resultantes da redução da holonomia, incluindo aspectos topológicos (homologia e grupo fundamental) e geométricos (curvatura). No último capítulo desenvolvemos o formalismo de teoria de calibre em dimensão quatro: introduzimos o espaço de moduli de instantons e realizamos as reduções dimen...