Nesse trabalho delineamos a teoria clássica para o campo de Einstein-Yang-Mills e elaboramos um conjunto particular de equações para obtermos soluções numéricas. Estudamos dois casos com simetria espaço-temporal: Simetria esférica com campo auto-gravitante e simetria axial no espaço-tempo de Minkowski. Utilizamos métodos numéricos das linhas para fazer a evolução temporal dos campos discretizados. No caso com simetria esférica, os campos são discretizados por diferenças finitas e no caso da simetria axial comparamos as discretizações por métodos Pseudo-Espectrais e por diferenças finitas. Para evolução temporal um método auto-adaptativo de Runge-Kutta é empregado. Na simulação dos campos de Yang-Mills auto-gravitantes com simetria esférica ...