In this paper we examine the local power of unit root tests against globally stationary exponential smooth transition autoregressive [ESTAR] alternatives under two sources of uncertainty: the degree of nonlinearity in the ESTAR model, and the presence of a linear deterministic trend. First, we show that the KSS test (Kapetanios, G., Y. Shin, and A. Snell. 2003. “Testing for a Unit Root in the Nonlinear STAR Framework.” Journal of Econometrics 112: 359–379) for nonlinear stationarity has local asymptotic power gains over standard Dickey-Fuller [DF] tests for certain degrees of nonlinearity in the ESTAR model, but that for other degrees of nonlinearity, the linear DF test has superior power. Second, we derive limiting distributions of demeane...