This short note studies the noncooperative foundations of von Neumann–Morgenstern stable sets in voting games. To do so, we study stationary Markov equilibria (SMEs) of a noncooperative legislative bargaining game, based on underlying simple games. The following result emerges from such an exercise: Every stable set of the underlying simple game is the limit set of pure strategy, stage-undominated SMEs of the bargaining game when voters are sufficiently farsighted
In a non-negative profit game that possesses a Population Monotonic Allocation Scheme (PMAS), being ...
We study the stability and the stability index of the meet game form defined on a meet semilattice. ...
We investigate the stable sets of social conflict games by employing the framework of the (abstract)...
peer reviewedThis short note studies the noncooperative foundations of von Neumann–Morgenstern stabl...
peer reviewedThis note examines the structure of stationary bargaining equilibria in the finite fram...
This note examines the structure of stationary bargaining equilibria in the finite framework of Anes...
This paper attempts to define a new solution concept for n-person noncooperative games. The idea of t...
International audienceThis paper deals with the non-emptiness of the stability set for any proper vo...
We investigate a noncooperative bargaining game for partitioning n agents into non-overlapping coali...
peer reviewedWe present a model of bargaining in which a committee searches over the pol-icy space, ...
This note uncovers new properties of the von Neumann-Morgenstern solution in weak tournaments and ma...
We present a model of bargaining in which a committee searches over the policy space, successively a...
this paper. The reader interested in this novel approach to social stability should consult either v...
Nonunanimous voting processes seldom possess voting equilibria if the number of alternatives is larg...
This paper considers voting situations in which the vote takes place iteratively. If a coalition rep...
In a non-negative profit game that possesses a Population Monotonic Allocation Scheme (PMAS), being ...
We study the stability and the stability index of the meet game form defined on a meet semilattice. ...
We investigate the stable sets of social conflict games by employing the framework of the (abstract)...
peer reviewedThis short note studies the noncooperative foundations of von Neumann–Morgenstern stabl...
peer reviewedThis note examines the structure of stationary bargaining equilibria in the finite fram...
This note examines the structure of stationary bargaining equilibria in the finite framework of Anes...
This paper attempts to define a new solution concept for n-person noncooperative games. The idea of t...
International audienceThis paper deals with the non-emptiness of the stability set for any proper vo...
We investigate a noncooperative bargaining game for partitioning n agents into non-overlapping coali...
peer reviewedWe present a model of bargaining in which a committee searches over the pol-icy space, ...
This note uncovers new properties of the von Neumann-Morgenstern solution in weak tournaments and ma...
We present a model of bargaining in which a committee searches over the policy space, successively a...
this paper. The reader interested in this novel approach to social stability should consult either v...
Nonunanimous voting processes seldom possess voting equilibria if the number of alternatives is larg...
This paper considers voting situations in which the vote takes place iteratively. If a coalition rep...
In a non-negative profit game that possesses a Population Monotonic Allocation Scheme (PMAS), being ...
We study the stability and the stability index of the meet game form defined on a meet semilattice. ...
We investigate the stable sets of social conflict games by employing the framework of the (abstract)...