Táto práca sa zameriava na problém detekcie hrán v prirodzených obrazoch pri zachovaní vysokej rýchlosti pre spracovanie obrázku. Najprv sa analyzujú existujúce prístupy a z nich sa extrahujú príslušné informácie. Táto informácia sa potom použije na navrhnutie dvoch architektúr, ktoré používajú konvolučné neurónové siete. Jedna architektúra je založená na RCF a obohacuje výstup, zatiaľ čo druhá je kombináciou RCF a RCN. Táto kombinácia poskytuje lepšie vzorkovanie a ešte viac obohacuje výstup. Vyhodnotenie sa uskutočnilo na dátovej sade BSDS500 a najlepší výsledok sa dosiahol pre model, ktorý kombinoval RCF a RCN so skóre ODS 0,675.This thesis focuses on the problem of detecting edges in natural images while maintaining high performance per...