Tato práce se zaměřuje na problém počítání vozidel v statickém obraze bez znalosti geometrických vlastností scény. V rámci řešení bylo implementováno a natrénováno 5 architektur konvolučních neuronových sítí. Také byl pořízen rozsáhlý dataset s 19 310 snímky pořízených z 12pohledů a zachycujících 7 různých scén. Použité konvoluční sítě mapují vstupní vzorek na mapu hustoty vozidel, ze které lze získat jejich počet a lokalizaci v kontextu vstupního snímku. Hlavním přínosem této práce je porovnání a aplikace dosavadních nejlepších řešení pro počítání objektů v obraze. Většina z těchto architektur byla navržena pro počítání lidí v obraze, proto musely být uzpůsobeny pro potřeby počítání vozidel v statickém obraze. Natrénované modely jsou vyhod...