Táto bakalárska práca sa zaoberá problematikou detekcie anomálií v časových radoch. Predstavuje metódy STL decomposition, ARIMA, Exponential Smoothing a LSTM Networks. Cieľom je pomocou týchto metód vytvoriť algoritmus, ktorý dokáže analyzovať trend v množstve generovaných záznamov o incidentoch a detekovať anomálie z trendu. Riešenie bolo vytvorené na základe dátovej sady poskytnutej firmou AT&T Global Network Services Czech Republic s.r.o. a implementované v programovacom jazyku Python.This bachelor thesis deals with the issue of time series anomaly detection. It presents methods STL decomposition, ARIMA, Exponential Smoothing and LSTM Networks. The aim is to use these methods to create an algorithm that can analyze the trend in a volume ...