Direct volume rendering and isosurfacing are ubiquitous rendering techniques in scientific visualization, commonly employed in imaging 3D data from simulation and scan sources. Conventionally, these methods have been treated as separate modalities, necessitating different sampling strategies and rendering algorithms. In reality, an isosurface is a special case of a transfer function, namely a Dirac impulse at a given isovalue. However, ar tifact-free rendering of discrete isosurfaces in a volume rendering framework is an elusive goal, requiring either infinite sampling or smoothing of the transfer function. While preintegration approaches solve the most obvious deficiencies in handling shar p transfer functions, ar tifacts can still result,...