V oblasti automatického rozpoznávání obličejů (AFR) byla vyvinuta celá řada metod, které dosahují vynikající úspěšnosti v případě kontrolovaných podmínek. Pokud podmínky nejsou kontrolované nebo jsou kontrolované jen v omezené míře, je úspěšnost významně snížena. Poskytnutí informace indikující pravděpodobnost, jestli je výsledek rozpoznání správný, je tedy velmi žádoucí. Tato práce se zabývá použitím konformního prediktoru (CP), který umožní k výstupu AFR metod přidat dobře kalibrované míry důvěry. CP je kombinován s klasifikátory založenými na deskriptorech POEM a SIFT. Dále je použita vážená kombinace obou klasifikátorů. Porovnáváme úspěšnost pěti způsobů výpočtu míry nonkonformity.Many Automatic face recognition (AFR) methods achieve a ...