Following the exact decomposition in eigenstates of helicity for the Navier-Stokes equations in Fourier space [F. Waleffe, Phys. Fluids A 4, 350 (1992)], we introduce a modified version of helical shell models for turbulence with nonlocal triadic interactions. By using both an analytical argument and numerical simulation, we show that there exists a class of models, with a specific helical structure, that exhibits a statistically stable inverse energy cascade, in close analogy with that predicted for the Navier-Stokes equations restricted to the same helical interactions. We further support the idea that turbulent energy transfer is the result of a strong entanglement among triads possessing different transfer properties