The dynamic nature of proteins in solution is often an indispensable factor in biological function such as enzymatic catalysis. Complementary to the conventional structural analysis, computational simulations have the advantage to reflect the dynamic nature of proteins or enzymes. One of the computational simulation methods, the quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations, has been widely applied to the research in structural analysis, ligand-receptor binding and enzymatic catalysis. In this dissertation, QM/MM MD simulations were applied to the studies on cytidine deaminase (CDA), yeast cytosine deaminase (yCD), and kumamolisin-As, as well as two protein lysine methyltransferases (PKMTs), DIM-5 and S...