Greenberger-Horne-Zeilinger (GHZ) states are characterized by their transformation properties under a continuous symmetry group, and N-body operators that transform covariantly exhibit a wealth of GHZ contradictions. We show that local or noncontextual hidden variables cannot duplicate the predicted measurement outcomes for covariant transformations, and we extract specific GHZ contradictions from discrete subgroups, with no restrictions on particle number N or dimension d except for the general requirement that N≥3 for GHZ states. However, the specific contradictions fall into three regimes distinguished by increasing demands on the number of measurement operators required for the proofs. The first regime consists of proofs found recently ...
In quantum theory, no-go theorems are important as they rule out the existence of a particular physi...
In all local realistic theories worked out till now, locality is considered as a basic assumption. M...
Greenberger-Horne-Zeilinger (GHZ) states and their mixtures exhibit fascinating properties. A comple...
Greenberger-Horne-Zeilinger (GHZ) states are characterized by their transformation properties under ...
Rotational symmetries of N-qubit Greenberger-Horne-Zeilinger (GHZ) states directly exhibit their non...
A generalization to $n$ parts with different number of levels (all with the same parity) of the proo...
We present a generalized Greenberger-Horne-Zeilinger (GHZ) theorem, which involves more than two loc...
We present a potential realization of the Greenberger-Horne-Zeilinger all or nothing contradiction o...
The existence of Greenberger-Horne-Zeilinger (GHZ) contradictions in many-qutrit systems was a long-...
In this paper detector efficiency conditions are derived for the Greenberger-Horne-Zeilinger (GHZ) p...
We present a generalized Greenberger-Horne-Zeilinger (GHZ) paradox in a tripartite system with each ...
The Greenberger-Horne-Zeilinger (GHZ) effect provides an example of quantum correlations that cannot...
We present a potential realization of the Greenberger, Horne and Zeilinger ALL or NOTHING contradict...
We generalize the Greenberger-Horne-Zeilinger nonlocality without inequalities argument to cover the...
M. Ardehali [Phys. Rev. A 46, 5375 (1992)] has derived a Bell-type inequality for a n-particle syste...
In quantum theory, no-go theorems are important as they rule out the existence of a particular physi...
In all local realistic theories worked out till now, locality is considered as a basic assumption. M...
Greenberger-Horne-Zeilinger (GHZ) states and their mixtures exhibit fascinating properties. A comple...
Greenberger-Horne-Zeilinger (GHZ) states are characterized by their transformation properties under ...
Rotational symmetries of N-qubit Greenberger-Horne-Zeilinger (GHZ) states directly exhibit their non...
A generalization to $n$ parts with different number of levels (all with the same parity) of the proo...
We present a generalized Greenberger-Horne-Zeilinger (GHZ) theorem, which involves more than two loc...
We present a potential realization of the Greenberger-Horne-Zeilinger all or nothing contradiction o...
The existence of Greenberger-Horne-Zeilinger (GHZ) contradictions in many-qutrit systems was a long-...
In this paper detector efficiency conditions are derived for the Greenberger-Horne-Zeilinger (GHZ) p...
We present a generalized Greenberger-Horne-Zeilinger (GHZ) paradox in a tripartite system with each ...
The Greenberger-Horne-Zeilinger (GHZ) effect provides an example of quantum correlations that cannot...
We present a potential realization of the Greenberger, Horne and Zeilinger ALL or NOTHING contradict...
We generalize the Greenberger-Horne-Zeilinger nonlocality without inequalities argument to cover the...
M. Ardehali [Phys. Rev. A 46, 5375 (1992)] has derived a Bell-type inequality for a n-particle syste...
In quantum theory, no-go theorems are important as they rule out the existence of a particular physi...
In all local realistic theories worked out till now, locality is considered as a basic assumption. M...
Greenberger-Horne-Zeilinger (GHZ) states and their mixtures exhibit fascinating properties. A comple...