In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktionsabbildungen für relative Nullzykel auf glatten projektiven Schemata über henselschen diskreten Bewertungsringen. Das Thema der ersten beiden Vermutungen ist eine Basiswechseleigenschaft mit endlichen Koeffizienten, die prim zur Restklassencharakteristik der Basis sind, für sogenannte höhere Nullzykel und Nullzykel mit Koeffizienten in Milnor K-Theorie. Die dritte Vermutung behandelt Chow-Gruppen relativer Nullzykel mit Koeffizienten, die nicht prim zur Restklassencharakteristik sind. Dies führt unter anderem zum Studium von Deformationen von Nullzykeln. Die drei Vermutungen hängen eng mit Vermutungen von Colliot-Thélène zur Struktur von C...
The objects studied in this thesis are families of cycles on schemes. A space — the Chow variety — p...
For a quasi-projective smooth scheme X of pure dimension d over a field k and an effective Cartier d...
Using an idelic argument and assuming the Gersten conjecture for Milnor K-theory, we show that the r...
In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktio...
In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktio...
International audienceReport on the work published in the article ``On the fibration method for zero...
We study zero-cycles in families of rationally connected varieties. We show that for a smooth projec...
We show the surjectivity of a restriction map for higher (0, l)-cycles for a smooth projective schem...
Given a smooth variety X and an effective Cartier divisor D subset of X, we show that the cohomologi...
Given a smooth variety X and an effective Cartier divisor D subset of X, we show that the cohomologi...
Given a smooth variety X and an effective Cartier divisor D subset of X, we show that the cohomologi...
The Chow groups of codimension-p algebraic cycles modulo rational equivalence on a smooth algebraic ...
This Ph. D. thesis studies the arithmetic properties (the Hasse principle, the weak approximation, a...
We study the exterior product CH0ðXÞnCH0ðYÞ ! CH0ðX YÞ on 0-cycles modulo rational equivalence. The...
International audienceLet X be a smooth and proper variety over a number field k. Conjectures on the...
The objects studied in this thesis are families of cycles on schemes. A space — the Chow variety — p...
For a quasi-projective smooth scheme X of pure dimension d over a field k and an effective Cartier d...
Using an idelic argument and assuming the Gersten conjecture for Milnor K-theory, we show that the r...
In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktio...
In dieser Dissertation studieren wir drei Vermutungen von Kerz, Esnault und Wittenberg zu Restriktio...
International audienceReport on the work published in the article ``On the fibration method for zero...
We study zero-cycles in families of rationally connected varieties. We show that for a smooth projec...
We show the surjectivity of a restriction map for higher (0, l)-cycles for a smooth projective schem...
Given a smooth variety X and an effective Cartier divisor D subset of X, we show that the cohomologi...
Given a smooth variety X and an effective Cartier divisor D subset of X, we show that the cohomologi...
Given a smooth variety X and an effective Cartier divisor D subset of X, we show that the cohomologi...
The Chow groups of codimension-p algebraic cycles modulo rational equivalence on a smooth algebraic ...
This Ph. D. thesis studies the arithmetic properties (the Hasse principle, the weak approximation, a...
We study the exterior product CH0ðXÞnCH0ðYÞ ! CH0ðX YÞ on 0-cycles modulo rational equivalence. The...
International audienceLet X be a smooth and proper variety over a number field k. Conjectures on the...
The objects studied in this thesis are families of cycles on schemes. A space — the Chow variety — p...
For a quasi-projective smooth scheme X of pure dimension d over a field k and an effective Cartier d...
Using an idelic argument and assuming the Gersten conjecture for Milnor K-theory, we show that the r...